Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Physiological reports ; 11(5), 2023.
Article in English | EuropePMC | ID: covidwho-2289224

ABSTRACT

Muscle deconditioning and impaired vascular function in the lower extremities (LE) are among the long‐term symptoms experienced by COVID‐19 patients with a history of severe illness. These symptoms are part of the post‐acute sequelae of Sars‐CoV‐2 (PASC) and currently lack evidence‐based treatment. To investigate the efficacy of lower extremity electrical stimulation (E‐Stim) in addressing PASC‐related muscle deconditioning, we conducted a double‐blinded randomized controlled trial. Eighteen (n = 18) patients with LE muscle deconditioning were randomly assigned to either the intervention (IG) or the control (CG) group, resulting in 36 LE being assessed. Both groups received daily 1 h E‐Stim on both gastrocnemius muscles for 4 weeks, with the device functional in the IG and nonfunctional in the CG. Changes in plantar oxyhemoglobin (OxyHb) and gastrocnemius muscle endurance (GNMe) in response to 4 weeks of daily 1 h E‐Stim were assessed. At each study visit, outcomes were measured at onset (t0), 60 min (t60), and 10 min after E‐Stim therapy (t70) by recording ΔOxyHb with near‐infrared spectroscopy. ΔGNMe was measured with surface electromyography at two time intervals: 0–5 min (Intv1) and: 55–60 min (Intv2). Baseline OxyHb decreased in both groups at t60 (IG: p = 0.046;CG: p = 0.026) and t70 (IG = p = 0.021;CG: p = 0.060) from t0. At 4 weeks, the IG's OxyHb increased from t60 to t70 (p < 0.001), while the CG's decreased (p = 0.003). The IG had higher ΔOxyHb values than the CG at t70 (p = 0.004). Baseline GNMe did not increase in either group from Intv1 to Intv2. At 4 weeks, the IG's GNMe increased (p = 0.031), whereas the CG did not change. There was a significant association between ΔOxyHb and ΔGNMe (r = 0.628, p = 0.003) at 4 weeks in the IG. In conclusion, E‐Stim can improve muscle perfusion and muscle endurance in individuals with PASC experiencing LE muscle deconditioning. This study indicates that self‐administered lower extremity (LE) electrical stimulation (E‐Stim) therapy is practical and effective at promoting the restoration of LE muscle perfusion and endurance in individuals with post‐acute sequelae of Sars‐CoV‐2 (PASC) who were previously hospitalized. The application of LE E‐Stim for 1 h daily over a 4 week period resulted in a significant increase in gastrocnemius muscle oxyhemoglobin levels, which led to an improvement in muscle endurance and recovery of excess postexercise oxygen consumption

2.
Physiol Rep ; 11(5): e15636, 2023 03.
Article in English | MEDLINE | ID: covidwho-2289223

ABSTRACT

Muscle deconditioning and impaired vascular function in the lower extremities (LE) are among the long-term symptoms experienced by COVID-19 patients with a history of severe illness. These symptoms are part of the post-acute sequelae of Sars-CoV-2 (PASC) and currently lack evidence-based treatment. To investigate the efficacy of lower extremity electrical stimulation (E-Stim) in addressing PASC-related muscle deconditioning, we conducted a double-blinded randomized controlled trial. Eighteen (n = 18) patients with LE muscle deconditioning were randomly assigned to either the intervention (IG) or the control (CG) group, resulting in 36 LE being assessed. Both groups received daily 1 h E-Stim on both gastrocnemius muscles for 4 weeks, with the device functional in the IG and nonfunctional in the CG. Changes in plantar oxyhemoglobin (OxyHb) and gastrocnemius muscle endurance (GNMe) in response to 4 weeks of daily 1 h E-Stim were assessed. At each study visit, outcomes were measured at onset (t0 ), 60 min (t60 ), and 10 min after E-Stim therapy (t70 ) by recording ΔOxyHb with near-infrared spectroscopy. ΔGNMe was measured with surface electromyography at two time intervals: 0-5 min (Intv1 ) and: 55-60 min (Intv2 ). Baseline OxyHb decreased in both groups at t60 (IG: p = 0.046; CG: p = 0.026) and t70 (IG = p = 0.021; CG: p = 0.060) from t0 . At 4 weeks, the IG's OxyHb increased from t60 to t70 (p < 0.001), while the CG's decreased (p = 0.003). The IG had higher ΔOxyHb values than the CG at t70 (p = 0.004). Baseline GNMe did not increase in either group from Intv1 to Intv2 . At 4 weeks, the IG's GNMe increased (p = 0.031), whereas the CG did not change. There was a significant association between ΔOxyHb and ΔGNMe (r = 0.628, p = 0.003) at 4 weeks in the IG. In conclusion, E-Stim can improve muscle perfusion and muscle endurance in individuals with PASC experiencing LE muscle deconditioning.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Perfusion , Lower Extremity , Muscle, Skeletal , Oxyhemoglobins , Electric Stimulation
3.
Clin Case Rep ; 11(2): e6915, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2244011

ABSTRACT

Several vaccines were approved after COVID-19 pandemic, which have been fast-tracked for emergency use. The short- and long-term safety profile has been an area of concern. We presented a patient with encephalitis followed by hyponatremia who developed hallucination and seizure 1 day after receiving the second dose of Sinopharm vaccine.

4.
Front Med (Lausanne) ; 9: 1017371, 2022.
Article in English | MEDLINE | ID: covidwho-2198991

ABSTRACT

Background: Intensive care unit (ICU) prolonged immobilization may lead to lower-extremity muscle deconditioning among critically ill patients, particularly more accentuated in those with 2019 Novel Coronavirus (COVID-19) infection. Electrical stimulation (E-Stim) is known to improve musculoskeletal outcomes. This phase I double-blinded randomized controlled trial examined the safety and efficacy of lower-extremity E-Stim to prevent muscle deconditioning. Methods: Critically ill COVID-19 patients admitted to the ICU were randomly assigned to control (CG) or intervention (IG) groups. Both groups received daily E-Stim (1 h) for up to 14 days on both gastrocnemius muscles (GNMs). The device was functional in the IG and non-functional in the CG. Primary outcomes included ankle strength (Ankles) measured by an ankle-dynamometer, and GNM endurance (GNMe) in response to E-Stim assessed with surface electromyography (sEMG). Outcomes were measured at baseline, 3 and 9 days. Results: Thirty-two (IG = 16, CG = 16) lower extremities in 16 patients were independently assessed. The mean time between ICU admission and E-Stim therapy delivery was 1.8 ± 1.9 days (p = 0.29). At 3 days, the IG showed an improvement compared to the CG with medium effect sizes for Ankles (p = 0.06, Cohen's d = 0.77) and GNMe (p = 0.06, d = 0.69). At 9 days, the IG GNMe was significantly higher than the CG (p = 0.04, d = 0.97) with a 6.3% improvement from baseline (p = 0.029). E-Stim did not alter vital signs (i.e., heart/respiratory rate, blood saturation of oxygen), showed no adverse events (i.e., pain, skin damage, discomfort), nor interfere with ICU standard of care procedures (i.e., mechanical ventilation, prone rotation). Conclusion: This study supports the safety and efficacy of early E-Stim therapy to potentially prevent deterioration of lower-extremity muscle conditions in critically ill COVID-19 patients recently admitted to the ICU. If confirmed in a larger sample, E-Stim may be used as a practical adjunctive therapy. Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT04685213].

5.
Sensors (Basel) ; 21(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1215452

ABSTRACT

BACKGROUND: Social isolation during COVID-19 may negatively impact older adults' wellbeing. To assess its impact, we measured changes in physical activity and sleep among community-dwelling older adults, from pre-to post-pandemic declaration. METHOD: Physical activity and sleep in older adults (n = 10, age = 77.3 ± 1.9 years, female = 40%) were remotely assessed within 3-month pre-to 6-month post-pandemic declaration using a pendant-wearable system. Depression was assessed pre-and post-pandemic declaration using the Center for Epidemiologic Studies Depression scale and was compared with 48 h continuous physical activity monitoring data before and during pandemic. RESULTS: Compared to pre-pandemic, post-pandemic time spent in standing declined by 32.7% (Cohen's d = 0.78, p < 0.01), walking by 52.2% (d = 1.1, p < 0.01), step-counts by 55.1% (d = 1.0, p = 0.016), and postural transitions by 44.6% (d = 0.82, p = 0.017) with increase in sitting duration by 20.5% (d = 0.5, p = 0.049). Depression symptoms increased by 150% (d = 0.8, p = 0.046). Interestingly, increase in depression was significantly correlated with unbroken-prolong sitting bout (ρ = 0.677, p = 0.032), cadence (ρ = -0.70, p = 0.024), and sleep duration (ρ = -0.72, p = 0.019). CONCLUSION: This is one of the early longitudinal studies highlighting adverse effect of the pandemic on objectively assessed physical activity and sleep in older adults. Our observations showed need for timely intervention to mitigate hard to reverse consequences of decreased physical activity such as depression.


Subject(s)
COVID-19 , Wearable Electronic Devices , Aged , Depression/diagnosis , Depression/epidemiology , Female , Humans , Pandemics , SARS-CoV-2
6.
Medicina (Kaunas) ; 57(4)2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1187001

ABSTRACT

About 422 million people worldwide have diabetes and approximately one-third of them have a major risk factor for diabetic foot ulcers, including poor sensation in their feet from peripheral neuropathy and/or poor perfusion to their feet from peripheral artery disease. The current healthcare ecosystem, which is centered on the treatment of established foot disease, often fails to adequately control key reversible risk factors to prevent diabetic foot ulcers leading to unacceptable high foot disease amputation rate, 40% recurrence of ulcers rate in the first year, and high hospital admissions. Thus, the latest diabetic foot ulcer guidelines emphasize that a paradigm shift in research priority from siloed hospital treatments to innovative integrated community prevention is now critical to address the high diabetic foot ulcer burden. The widespread uptake and acceptance of wearable and digital health technologies provide a means to timely monitor major risk factors associated with diabetic foot ulcer, empower patients in self-care, and effectively deliver the remote monitoring and multi-disciplinary prevention needed for those at-risk people and address the health care access disadvantage that people living in remote areas. This narrative review paper summarizes some of the latest innovations in three specific areas, including technologies supporting triaging high-risk patients, technologies supporting care in place, and technologies empowering self-care. While many of these technologies are still in infancy, we anticipate that in response to the Coronavirus Disease 2019 pandemic and current unmet needs to decentralize care for people with foot disease, we will see a new wave of innovations in the area of digital health, smart wearables, telehealth technologies, and "hospital-at-home" care delivery model. These technologies will be quickly adopted at scale to improve remote management of diabetic foot ulcers, smartly triaging those who need to be seen in outpatient or inpatient clinics, and supporting acute or subacute care at home.


Subject(s)
COVID-19 , Diabetes Mellitus , Diabetic Foot , Amputation, Surgical , Diabetic Foot/prevention & control , Ecosystem , Humans , SARS-CoV-2
7.
PLoS One ; 16(2): e0246101, 2021.
Article in English | MEDLINE | ID: covidwho-1105807

ABSTRACT

OBJECTIVE: Cancer-related fatigue (CRF) is highly prevalent among cancer survivors, which may have long-term effects on physical activity and quality of life. CRF is assessed by self-report or clinical observation, which may limit timely diagnosis and management. In this study, we examined the effect of CRF on mobility performance measured by a wearable pendant sensor. METHODS: This is a secondary analysis of a clinical trial evaluating the benefit of exercise in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN). CRF status was classified based on a Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) score ≤ 33. Among 28 patients (age = 65.7±9.8 years old, BMI = 26.9±4.1kg/m2, sex = 32.9%female) with database variables of interest, twenty-one subjects (75.9%) were classified as non-CRF. Mobility performance, including behavior (sedentary, light, and moderate to vigorous activity (MtV)), postures (sitting, standing, lying, and walking), and locomotion (e.g., steps, postural transitions) were measured using a validated pendant-sensor over 24-hours. Baseline psychosocial, Functional Assessment of Cancer Therapy-General (FACT-G), Falls Efficacy Scale-International (FES-I), and motor-capacity assessments including gait (habitual speed, fast speed, and dual-task speed) and static balance were also performed. RESULTS: Both groups had similar baseline clinical and psychosocial characteristics, except for body-mass index (BMI), FACT-G, FACIT-F, and FES-I (p<0.050). The groups did not differ on motor-capacity. However, the majority of mobility performance parameters were different between groups with large to very large effect size, Cohen's d ranging from 0.91 to 1.59. Among assessed mobility performance, the largest effect sizes were observed for sedentary-behavior (d = 1.59, p = 0.006), light-activity (d = 1.48, p = 0.009), and duration of sitting+lying (d = 1.46, p = 0.016). The largest correlations between mobility performance and FACIT-F were observed for sitting+lying (rho = -0.67, p<0.001) and the number of steps per day (rho = 0.60, p = 0.001). CONCLUSION: The results of this study suggest that sensor-based mobility performance monitoring could be considered as a potential digital biomarker for CRF assessment. Future studies warrant evaluating utilization of mobility performance to track changes in CRF over time, response to CRF-related interventions, and earlier detection of CRF.


Subject(s)
Antineoplastic Agents/adverse effects , Cancer Survivors/psychology , Exercise Therapy/instrumentation , Fatigue/epidemiology , Peripheral Nervous System Diseases/rehabilitation , Aged , Clinical Trials as Topic , Fatigue/diagnosis , Fatigue/etiology , Female , Humans , Male , Middle Aged , Peripheral Nervous System Diseases/chemically induced , Quality of Life , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL